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Including electron inertia without advancing electron flow
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1. Introduction

There are a variety of plasma physics problems where including electron inertia can be important, e.g.,

magnetic reconnection [1–9], inertial Alfv�een waves for auroral electron acceleration [10,11] and electron-

temperature-gradient turbulence [12,13]. There has also been recent interest in closure of fluid-electron

equations for gyrokinetic turbulence simulations [14–19] where electron inertia is typically neglected, but

could be important near mode rational surfaces [20]. Here, we describe a benign way to include the effects of
electron inertia without advancing the electron momentum equation and thereby avoiding the associated

kkvteDt Courant condition or subsequent implicit methods. The effect of electron inertia has been included in

simpler Electron-MHD models [4,7,21,22] without advancing the electron momentum equation directly.

We apply a related technique to drift-fluid electron models appropriate for gyrokinetic simulation of well-

magnetized plasmas. First, we discuss our technique for including the electron inertia in drift-fluid electron

equations. Next, we use a simple example of von Neumann stability analysis to demonstrate that the new

scheme is stable whereas trivial finite-differencing of the electron flow is shown to be unstable. Finally, a

similar method is discussed for extended-MHD models and shown to be a generalization of the Electron-
MHD equations.
2. Electron inertia in a electron drift-fluid model

A numerical stability problem arises when a simple drift-fluid electron model is used to simulate Alfv�een
waves in a regime where the electron inertia is important. We have used a drift-fluid electron model with

electron inertia for two distinct applications. First, we have modeled Alfv�een waves in the terrestrial
magnetosphere and ionosphere. The electron inertia term is necessary for the generation of parallel electric

fields. Second, very similar equations are used in kinetic hybrid models for microturbulence [14–18]. Both

the microturbulence and magnetospheric simulations include more complete gyrokinetic or gyrofluid

models for the ions. However, the difficulty with the inertia term can be best demonstrated with the

following simple one-dimensional electron equations along a magnetic field line.
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The ion polarization drift effect is retained by using the gyrokinetic quasi-neutrality condition [23]. We

advance the drift-fluid electron continuity equation [24] and the gauge definition of electric field in time using

one
ot

¼ �Brjj
neujje
B

� �
; ð1Þ
oAk

ot
¼ �Ejj � rjjU; ð2Þ

where ne is the electron density, ujje is the parallel electron flow, and Ak is the vector potential parallel to B.

U is solved for by using gyrokinetic Poisson equation (or quasi-neutrality condition)

q2
ir2

?
eU
Ti

¼ dne
ne

� dni
ni

; ð3Þ

where Te is the electron temperature, q2
i ¼ miTi=e2B2 is the ion gyroradius, Ti is the ion temperature, and we

have taken the small k2?q
2
i limit for clarity in Eq. (3). ujje is evaluated by solving Ampere�s law backwards

el0neujje ¼ r2Ajj þ el0niujji: ð4Þ

Finally Ejj is updated using the drift-fluid electron momentum equation in the form of a generalized Ohm�s
law

e
me

neEjj ¼ �rjj
neT
me

� �
�
o neujje
� �
ot

: ð5Þ

We set dni and ujji to zero because the Alfv�een wave can be demonstrated with electron equations alone.

However, in our more complete simulation we include either full gyrofluid or gyrokinetic ion response, and

the methods discussed here are easily generalized to include ions. Linearizing Eqs. (1)–(5) produces the

following dispersion relation

x2

k2jj
¼ v2a

1þ k2?q
2
s

1þ k2?k
2
e

;

which includes both the kinetic and inertial corrections to the Alfv�een wave. v2a ¼ B2=l0mini is the Alfv�een
speed, q2

s ¼ miTe=e2B2, and k2e ¼ me=nel0e
2 is the electron skin depth.

After we advance Eqs. (1)–(4), we can evaluate oujje=ot in Eq. (5) using a backward finite-difference in

time. This method has been shown to be stable in the regime where ion kinetic effects are more important
than electron inertia [18]. However, this method caused numerical instability in our simulation when

ke > qi. By examining the contributions of the various terms in our simulation, we clearly identified that the

term (unþ1
e � uneÞ=Dt was the cause of the numerical instability. This motivated using the following method

of evaluating oujje=ot. Rather than directly evaluating oneujje=ot, we use Eqs. (4) and (2) to obtain

oneujje
ot

¼ 1

l0e
r2 oAk

ot
¼ �1

l0e
r2 Ejj

�
þrjjU

�
: ð6Þ

We then substitute Eq. (6) into Eq. (5) to obtain the following generalized parallel Ohm�s law:

e
me

ne 1
�

þ k2er2
�
Ejj ¼ �rjj

neT
me

� �
þ 1

l0e
r2 rjjU

� �
; ð7Þ

which allows us to evaluate Enþ1
jj in a time centered manner. Eq. (7) has the form of a modified parallel

Ohm�s law (two new terms appearing). The last term on the right-hand-side is straight-forward to evaluate.
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The operator ð1þ k2er2Þ on the left-hand-side is trivial to invert spectrally, or could involve a narrowly

banded matrix inversion more generally.
3. Stability analysis

In this section von Neumann stability analysis is used to show that explicit finite-differencing of the

inertia term in the parallel Ohm�s law, Eq. (5) is unstable. We then analyze the finite-difference equations
using the alternative form of the parallel Ohm�s law, Eq. (7), and obtain a Courant condition (conditional

stability). To obtain an analytically tractable result, we use a first-order Lax–Wendroff method applied to

Eqs. (1)–(5), and use a simple backward difference of oujje=ot in Eq. (5). The Lax–Wendroff method [25] for

a flux-conserving equation ou=ot ¼ oF ðuÞ=ox, is

unþ1
j ¼ 1

2
unjþ1

�
þ unj�1

�
þ Dt
2Dx

F unjþ1

� �h
� F unj�1

� �i
: ð8Þ

We make the standard assumptions that all the quantities are periodic in space, and grow exponentially

in time, hence, nnj ¼ nn eikjjjDx, En
j ¼ En eikjjjDx, and so forth. Defining / � kjjDx and G � Enþ1=En, we can solve

for G, the amplification factor, and study the stability of the scheme

G cos2 /þ G3 � 2G2 cos/þ G
Dt
Dx

� �2

v2a sin
2 / ¼ að�G2 þ Gþ G cos/� cos/Þ

� w
Dt
Dx

� �2

G sin2 /; ð9Þ

where a ¼ k2ek
2
?, and w ¼ v2a þ v2tek

2
ek

2
?.

When / ¼ p, kjj ¼ p=Dx which represents the Nyquist wavelength which is the smallest wavelength that

can be resolved. This yields

G2 þ aGþ G� a ¼ 0: ð10Þ

A plot of jGðaÞj is shown in Fig. 1. We see that for finite a there exists a growing solution for jGj. For small

a we have jGj ’ 1þ 2a. Therefore, an absolute instability exists for the first-order Lax–Wendroff method

when the inertia term in Eq. (5) is finite-differenced in time and k? is finite. Shown in Fig. 1 are the results of

a first-order simulation varying a. This obviously does not automatically mean that all schemes will be
unstable. However, we have numerically tested a second-order Lax–Wendroff scheme and observe that

increasing k? causes numerical instability in the electron inertial regime as well (Fig. 1). For aK 1:3 the

second-order scheme is found to be stable. Solving for for G for the second-order scheme required solving a

quintic equation for a and was not analytically tractable.

Next, we do the same stability analysis, but rather than finite-differencing the inertia term, the last term

in Eq. (5), we use the new parallel Ohm�s law, Eq. (7), obtaining

G2 � 2G sin/þ cos2 /�
ffiffiffiffiffiffiffiffiffiffiffi
w

1þ a

r
sin2 / ¼ 0: ð11Þ

Solving this quadratic for G yields

G ¼ cos/� i

ffiffiffiffiffiffiffiffiffiffiffi
w

1þ a

r
Dt
Dx

sin/: ð12Þ



Fig. 1. a versus amplification factor jGj. jGj > 1 demonstrates absolute instability of finite a when electron inertia is explicitly finite

differenced.
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which shows the scheme is conditionally stable and constrained by the following Courant condition,

va

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2?q2

s

1þ k2?k
2
e

s
Dt
Dx

6 1: ð13Þ

Therefore, using the time-centered substitution we describe here, i.e., using the modified Ohm�s law, Eq. (7),
conditional stability is achieved.
4. Application to MHD equations

In this section we apply a similar technique as discussed in Section 2 to include the electron inertia in the

one-fluid generalized Ohm�s law. The result is a generalization of the electron MHD equations [4,7,21,22].
We assume quasi-neutrality and begin with the usual MHD-Maxwell equations. B is obtained using

Faraday�s law

oB

ot
¼ �r� E; ð14Þ

and E is solved for using the generalized Ohm�s law

E ¼ �u� Bþ g
l0

r� Bþ 1

l0en
ðr � BÞ � B� 1

en
r �Pe �

me

ne
oðnueÞ
ot

; ð15Þ

where the displacement current in Maxwell�s equations is neglected and Ampere�s law r� B ¼ l0J is used

to eliminate J in the gJ term and the Hall term. Pe is the electron pressure tensor and is determined from

the electron distribution function Pe �
R
vvdfed3v. Pe, the pressure term cannot be analytically eliminated

like the inertia term, so we write it explicitly. For clarity, one could set Pe ¼ 0 and assume the electron

pressure term in the generalized Ohm�s law is neglected. u is determined from the one-fluid MHD equation

and the determination of ue will be explained as follows.
We eliminate the time derivative in the electron inertia term, the last term in the generalized Ohm�s law,

Eq. (15), by using Faraday�s law, Ampere�s law and the ion momentum equation.



326 S.T. Jones, S.E. Parker / Journal of Computational Physics 191 (2003) 322–327
r� ðr � EÞ ¼ � o r� Bð Þ
ot

¼ l0e
oðnueÞ
ot

�
� oðnuiÞ

ot

	
; ð16Þ

We can then rewrite the last term in Eq. (15) as

�me

ne
oðnueÞ
ot

¼ me

l0ne2
~rr2E� me

ne
oðnuiÞ
ot

; ð17Þ

where ~rr2 � �r� ðr � EÞ. To eliminate oðnuiÞ=ot we use the ion momentum equation

oðnuiÞ
ot

¼ en
mi

ðEþ ui � BÞ � 1

mi

r �Pi; ð18Þ

where Pi �
R
vvdfid3v: Substituting Eq. (18) into (17), we obtain

�me

ne
oðnueÞ
ot

¼ me

l0ne2
~rr2E� me

mi

ðEþ ui � BÞ þ me

mine
r �Pi: ð19Þ

Using the fact that me=mi � 1 we can neglect the last two terms on the right-hand-side of Eq. (19). The

generalized Ohm�s law, Eq. (15), then becomes

1
h

� k2e ~rr2
i
E ¼ �u� Bþ g

l0

r� Bþ 1

l0en
ðr � BÞ � B� 1

en
r �Pe: ð20Þ

E can be solved for by inverting the the operator on the left-hand-side of Eq. (20) using Fourier series or

matrix inversion.

This new form of the generalized Ohm�s law, Eq. (20), along with Faraday�s law, Eq. (14) can be written

in a form similar to the electron MHD equations [4,7,21,22]. Using the fact that r� ð ~rr2EÞ ¼ ~rr2ðr � EÞ;
we can rewrite Eqs. (14) and (20) as

oB0

ot
¼ �r� E0; ð21Þ

where B0 ¼ ½1� k2e ~rr2�B and E0 ¼ 1� k2e ~rr2

 �

E. These equations are similar in form to those used by Shay
et al., see Eqs. (2)–(4) in [8]. To use Eq. (20) in extended-MHD computation, u would be determined from

the one-fluid MHD equation and a pressure closure would be required to evaluate Pe.
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